Amino Acid Signature Enables Proteins to Recognize Modified tRNA

نویسندگان

  • Jessica L. Spears
  • Xingqing Xiao
  • Carol K. Hall
  • Paul F. Agris
چکیده

Human tRNA(Lys3)UUU is the primer for HIV replication. The HIV-1 nucleocapsid protein, NCp7, facilitates htRNA(Lys3)UUU recruitment from the host cell by binding to and remodeling the tRNA structure. Human tRNA(Lys3)UUU is post-transcriptionally modified, but until recently, the importance of those modifications in tRNA recognition by NCp7 was unknown. Modifications such as the 5-methoxycarbonylmethyl-2-thiouridine at anticodon wobble position-34 and 2-methylthio-N(6)-threonylcarbamoyladenosine, adjacent to the anticodon at position-37, are important to the recognition of htRNA(Lys3)UUU by NCp7. Several short peptides selected from phage display libraries were found to also preferentially recognize these modifications. Evolutionary algorithms (Monte Carlo and self-consistent mean field) and assisted model building with energy refinement were used to optimize the peptide sequence in silico, while fluorescence assays were developed and conducted to verify the in silico results and elucidate a 15-amino acid signature sequence (R-W-Q/N-H-X2-F-Pho-X-G/A-W-R-X2-G, where X can be most amino acids, and Pho is hydrophobic) that recognized the tRNA's fully modified anticodon stem and loop domain, hASL(Lys3)UUU. Peptides of this sequence specifically recognized and bound modified htRNA(Lys3)UUU with an affinity 10-fold higher than that of the starting sequence. Thus, this approach provides an effective means of predicting sequences of RNA binding peptides that have better binding properties. Such peptides can be used in cell and molecular biology as well as biochemistry to explore RNA binding proteins and to inhibit those protein functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli.

The site-specific incorporation of unnatural amino acids (UAAs) into proteins in living cells relies on an engineered tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) pair, orthogonal to the host cell, to deliver the UAA of choice in response to a unique nonsense or frameshift codon. Here we report the generation of mutually orthogonal prolyl-tRNA/prolyl-tRNA synthase (ProRS) pairs derived from an ar...

متن کامل

Expanding the Genetic Code of Yeast for Incorporation of Diverse Unnatural Amino Acids via a Pyrrolysyl-tRNA Synthetase/tRNA Pair

We report the discovery of a simple system through which variant pyrrolysyl-tRNA synthetase/tRNA(CUA Pyl) pairs created in Escherichia coli can be used to expand the genetic code of Saccharomyces cerevisiae. In the process we have solved the key challenges of producing a functional tRNA(CUA Pyl) in yeast and discovered a pyrrolysyl-tRNA synthetase/tRNA(CUA Pyl) pair that is orthogonal in yeast....

متن کامل

Efficient Multisite Unnatural Amino Acid Incorporation in Mammalian Cells via Optimized Pyrrolysyl tRNA Synthetase/tRNA Expression and Engineered eRF1

The efficient, site-specific introduction of unnatural amino acids into proteins in mammalian cells is an outstanding challenge in realizing the potential of genetic code expansion approaches. Addressing this challenge will allow the synthesis of modified recombinant proteins and augment emerging strategies that introduce new chemical functionalities into proteins to control and image their fun...

متن کامل

Two distinct regions in Staphylococcus aureus GatCAB guarantee accurate tRNA recognition

In many prokaryotes the biosynthesis of the amide aminoacyl-tRNAs, Gln-tRNA(Gln) and Asn-tRNA(Asn), proceeds by an indirect route in which mischarged Glu-tRNA(Gln) or Asp-tRNA(Asn) is amidated to the correct aminoacyl-tRNA catalyzed by a tRNA-dependent amidotransferase (AdT). Two types of AdTs exist: bacteria, archaea and organelles possess heterotrimeric GatCAB, while heterodimeric GatDE occur...

متن کامل

Synthetase polyspecificity as a tool to modulate protein function.

The site-specific incorporation of unnatural amino acids (UAAs) into proteins in bacteria is made possible by the evolution of aminoacyl-tRNA synthetases that selectively recognize and aminoacylate the amino acid of interest. Recently we have discovered that some of the previously evolved aaRSs display a degree of polyspecificity and are capable of recognizing multiple UAAs. Herein we report th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014